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ABSTRACT: Based on mathematical modelling, effective methods have been developed for studying the 
dynamics of tunnels under transport loads (from an object moving through the tunnel). For a tunnel with a 
circular three-layer lining, such a method has only been developed in the case of a deep-buried tunnel. This 
article focuses on a similar shallow-buried tunnel, modeled as a circular cylindrical three-layer shell, composed 
of a thick middle layer (filler) and thin outer layers (cladding), embedded in an elastic half-space. The horizontal 
boundary of the half-space (the ground surface) is parallel to the shell axis. The motion of the filler and the half-
space is described by the dynamic equations of elasticity theory in Lamé potentials, while the motion of the 
cladding layers – by the classical equations of shell theory. The equations are represented in a moving coordinate 
system associated with a uniformly moving load along the inner surface of the shell. Based on the obtained 
solution and numerical experiments, the stress-strain state of the ground surface was investigated under the 
influence of a transport normal load acting symmetrically relative to the vertical diametral plane of the tunnel on 
the three-layer steel-concrete lining, as well as when the intensity of one of its symmetric halves was doubled. 
This asymmetric load distribution leads to significant changes in the displacements and stresses of the ground 
surface, with horizontal displacements increasing by more than an order of magnitude. Thus, the transport load 
must be symmetrical in the operation of shallow-buried tunnels in urban areas. 
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1. INTRODUCTION 
 

The engineering of shallow tunnels has the effect 
of reducing both the cost and the time required for 
construction. Nevertheless, the operational 
experience of such tunnels in urban areas 
demonstrates a notable surge in the intensity of 
vibrations in buildings and structures located in 
close proximity to their route, predominantly 
attributable to transport loads. It can be reasonably 
deduced that exceeding the permissible norm level 
of vibrations established for buildings will result in 
their unsuitability for habitation. Furthermore, the 
vibrations have an adverse impact on a number of 
high-precision technological processes and on 
human health. In light of these considerations, it is 
imperative to ensure the adequate reliability of all 
components of the underground structure, while 
concurrently addressing the issue of permissible 
proximity to surface structures [1].  

Consequently, the study of the dynamics of 
tunnels subjected to transport loads represents a 
significant engineering challenge, which is 
addressed through the application of a modeling 
research approach. The primary models employed to 
investigate the dynamics of tunnels subjected to 
transport loads are those pertaining to the dynamic 
behavior of an elastic half-space (the first problem) 
or elastic space (the second problem) with a 
reinforced extended cavity undergoing movement 
along its axis. The first problem deals with the 

dynamics of a shallow tunnel, whereas the second 
problem considers the dynamics of a deep tunnel. 
The question of the permissible proximity of 
buildings and structures to shallow tunnels can be 
addressed by investigating the first problem. Once 
the second problem has been solved, it is possible to 
determine the distance from the tunnel at which the 
impact effect of transport loads on the surrounding 
massif will be insignificant. This will allow 
recommendations to be made regarding the optimal 
depth of its embedment [2].  

The widespread use of closed circular cylindrical 
homogeneous and multilayered shells in tunnel 
structures raises the issue of studying elastic media 
with cylindrical cavities of circular cross-section. 
The model transportation problem, as it pertains to a 
circular deep tunnel, was previously considered in 
[3, 4] and numerous other papers. This problem 
concerns the effect of a transport load moving with 
constant velocity on an infinitely long circular 
cylindrical thick-walled or thin-walled homogeneous 
shell in elastic space. A comparable issue was 
addressed in the context of a multilayered (three-
layer or two-layer) shell comprising rigidly 
interconnected concentric layers with different 
physical and mechanical properties, as discussed in 
[5 – 7]. In [5], the stress-strain state (SSS) of a three-
layer elastic shell (with a thick middle layer and thin 
outer layers) was studied; in [6], the SSS of a two-
layer elastic shell (with a thick inner layer and a thin 
outer layer); and in [7], the SSS of a two-layer 
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elastic shell (with a thin inner layer and a thick outer 
layer), with the SSS of the elastic medium 
surrounding these shells also analyzed. In all these 
articles, the motion of the thin shell layers was 
described by the classical equations of shell theory, 
while the motion of the thick layers and the 
surrounding elastic medium was described using the 
dynamic equations of elasticity theory in vector 
form. 

In the case of shallow tunnels, the solution to the 
model transportation problem becomes significantly 
more complex due to the notable deformation of the 
ground surface and its impact on the stress 
concentration in the surrounding area of the structure 
during the diffraction of reflected waves. The 
number of scientific works published on this issue is 
relatively limited, particularly [8 – 18]. Articles [8 –
 17] examine the effect of a moving load on a 
circular cylindrical homogeneous shell located in an 
elastic half-space. In article [8], the motion of the 
shell under the influence of a uniformly moving load 
of an arbitrary type was described by the classical 
equations of shell theory, while in article [9], the 
dynamic equations of elasticity theory in vector form 
were used, which were also used to describe the 
motion of the elastic half-space. Numerical studies 
were conducted to analyze the effect of a moving 
normal load on the shell. In articles [10 – 12], a 
similar problem to [8] was examined, but under the 
influence of uniformly moving loads of various 
types: axial tangential load [10], axial tangential and 
normal loads [11], as well as torsional and normal 
loads [12]. 

In works [13, 14], a closed-form semi-analytical 
solution is presented for vibrations caused by a 
moving point load in a tunnel reinforced with a 
homogeneous lining embedded in a half-space. The 
tunnel lining is modeled as an elastic hollow 
cylinder, while the surrounding ground is treated as 
a linear viscoelastic material. The total wave field in 
the half-space with a cylindrical cavity is 
represented by outgoing cylindrical waves and 
downward-propagating plane waves. Unlike [13, 
14], article [15] investigates the vibrations of the 
same tunnel in an elastic half-space subjected to 
uniformly distributed dynamic pressure. Assuming 
plane strain, the equations of motion for the tunnel 
lining and the surrounding medium are reduced to 
two wave equations in polar coordinates using 
Helmholtz potentials. 

In article [16], an analytical method is presented 
for calculating ground vibrations from a tunnel in a 
multilayered half-space. Using the transfer matrix 
method, the dynamic matrix of the system is 
obtained for multilayered soil overlying a half-space 
or bedrock. The tunnel is coupled with the 
multilayered soil through transformations between 
cylindrical and plane waves. The proposed method 
provides a highly efficient tool for predicting 

vibrations caused by underground railways. 
In article [17], a new two-dimensional (2D) 

semi-analytical method is proposed for calculating 
ground vibrations from a tunnel located in a 
homogeneous half-space with an irregular surface. 
The circular tunnel is represented as an elastic body, 
while the soil is modeled as an elastic, isotropic, and 
homogeneous half-space with an irregular surface. A 
virtual horizontal interface is introduced to divide 
the soil domain into an irregular section with an 
arbitrary surface shape and a half-space with a 
circular cavity. The scattered wave field from the 
irregular surface is modeled using a boundary 
integral equation. 

The effect of a moving load on a circular 
cylindrical two-layer shell situated in an elastic half-
space, whose model was presented in [6], is 
examined in [18].  

In this paper, the structure of shallow tunnel 
lining is modeled as an extended circular cylindrical 
shell consisting of three concentric layers: a thick 
middle layer (filler) and thin outer layers (cladding). 
It is assumed that the contact between the shell and 
the surrounding medium, as well as between the 
layers of the shell, is rigid. 

Due to the widespread use of three-layer shell 
linings in tunnel construction in recent years [19], 
and the lack of adequate dynamic calculations for 
such structures and the ground surface above them 
under transport loads, the research conducted in this 
paper is both important and timely. 

The study conducted in this article differs from 
the earlier research on a deep tunnel reinforced with 
a three-layer lining [5] in that it takes into account 
the impact of waves reflected from the Earth's 
surface, which arise under transport loading, on the 
tunnel and the surrounding soil mass, and also 
includes the calculation of the SSS of the Earth's 
surface. Accounting for this effect leads to more 
accurate results in calculating the SSS of the tunnel 
lining and the surrounding soil mass compared to 
[5]. 

The objective of the research:  
- to provide an analytical solution to the problem 

and to develop computer programs based on this 
solution to study the dynamics of a shallow tunnel 
supported by a three-layer lining, corresponding to 
the model adopted in this paper, under stationary 
transport loads;  

- to numerically investigate the SSS of the 
ground surface under the influence of various types 
of transport loads on the three-layer tunnel lining.  

The problem formulation and solution are 
outlined in the Results section. In the same section, 
the results of the numerical experiments are 
presented and subsequently analyzed in the 
Discussion section. The methodology employed in 
the study is delineated in the Methods section. The 
Conclusion section presents a synthesis of the 
findings from the research project. 
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2. RESEARCH SIGNIFICANCE 
 
The solution obtained and the computer 

programs developed on its basis permit the study of 
the dynamics of the rock body and the ground 
surface along the route of a tunnel supported by a 
three-layer lining at varying depths of embedment 
and different speeds of transport for loads of various 
types. The speed and type of transport loads exert a 
significant influence on the dynamics of the ground 
surface. This must be taken into account, for 
example, in the construction of subways, especially 
in light of the current era of rapid growth in high-
speed rail transport. By selecting the appropriate 
materials and thicknesses for the tunnel lining layers 
at a given shallow depth, it is possible to reduce the 
vibration of the ground surface along the tunnel 
without compromising the accepted transportation 
speed. This can help to mitigate the negative effects 
that ground vibrations have on the seismic stability 
of nearby buildings and structures. 

 
3. METHODS 
 

The study presented in this paper employs the 
mathematical modeling approach based on the 
theory of elasticity [2]. The tunnel is represented as 
an infinitely long, circular, cylindrical, three-layer 
elastic shell situated in a homogeneous, isotropic, 
and linearly elastic half-space that is parallel to its 
horizontal boundary. Initially, the load, which moves 
uniformly with subsonic velocity along the inner 
surface of the shell, is assumed to be sinusoidal 
along the shell axis with an arbitrary dependence on 
the angular coordinate. In order to address the issue, 
the method of incomplete separation of variables 
[5 – 9, 18] is put forth as a potential solution. The 
solution for the Lamé potentials is presented as a 
superposition of Fourier-Bessel series and Fourier-
type contour integrals. Furthermore, the method of 
decomposition of potentials into plane waves and 
decomposition of plane waves into series on 
cylindrical functions is employed [8, 9, 18]. 
Subsequently, the solution obtained is employed to 
solve the problem of the impact of an aperiodic 
moving load of arbitrary type on the given shell.  

 
4. RESULTS 
 
4.1 Formulation and Analytical Solution of the 
Problem 
 

Figure 1 depicts the design scheme of a three-
layer tunnel with a depth of h, supported by a three-
layer lining in a homogeneous and isotropic medium 
(body). This body is a linear-elastic half-space, as 
defined by the fixed Cartesian x, y, z and cylindrical 

r, θ, z coordinate systems. The z-axis is aligned with 
the shell axis, while the x-axis is perpendicular to the 
boundary of the half-space (ground surface). The 
outermost thin layers of the shell (cladding) with 
radii of the medial surfaces R1 and R2 and 
thicknesses h01 and h02 are rigidly coupled with the 
middle thick layer (filler) and the surrounding elastic 
medium. Given the thinness of the lining layers, it is 
reasonable to assume that they are in contact with 
the filler and the surrounding body along their 
medial surfaces. 

 

 
 

Fig. 1.  A three-layer shell in an elastic half-space 
 

The physical and mechanical properties of the 
materials comprising the shell filler and the 
surrounding body are characterized by the following 
constants: nk – Poisson’s ratio, µk – shear modulus, 
rk – density (k = 1, 2), where index k = 1 refers to 
the body, k = 2 – to the shell filler. In regard to the 
physical and mechanical characteristics of the 
materials constituting the shell lining layers, the 
following designations are employed: n0k – Poisson's 
ratio, µ0k – shear modulus, r0k – density (k = 1, 2). 
Here the index k = 1 refers to the outer lining layer, 
and k = 2 – to its inner layer. 

A load of intensity P moves along the inner 
surface of the shell in the direction of the z-axis with 
a constant velocity c (less than the velocities of shear 
wave propagation in the shell filler and the 
surrounding body).  

Since a steady-state process is under 
consideration, it is appropriate to employ the moving 
Cartesian (x, y, h = z - ct) and cylindrical 
(r, θ, h = z - ct) coordinate systems (Fig. 1), which 
move together with the loads.  

To describe the motion of the outer layer (k = 1) 
and the inner layer (k = 2) of the shell cladding, it is 
necessary to employ the classical equations of shell 
theory. In the moving coordinate system, these 
equations take the form [5] 
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,        (1) 

, 

 
where u0jk are the components of displacement of the 
points of the median surfaces of the shell lining 
layers; qjR2 = σrj2 (r = R2), qj1 = σrj2 (r = R1), 
qjR1 = σrj1 (r = R1) are the components of the reaction 
of the shell filler and the body; σrj1, σrj2 are the 
components of stress tensors in the body and shell 
filler; qj2 = Pj(θ, η); Pj(θ, η) are the components of 
the load intensity P(θ, η); j = η, θ, r.  

The motion of the body (k = 1) and the shell 
filler (k = 2) will be described by the dynamic 
equations of elasticity theory in vector form 
presented in the moving coordinate system [5 –
 7,  9, 18]  

 
 (2) 

 
where Mpk = c/cpk, Msk = c/csk; , 

 are dilation-compression and shear 
wave propagation velocities, , 
Ñ2 – Laplace operator, uk – point displacement 
vectors. 

If the vectors uk are expressed in terms of the 
Lamé potentials jjk (j = 1, 2, 3, k = 1, 2) [5 – 7, 9, 
18]  

 
,  (3) 

 
it follows from (2) and (3) that jjk satisfy the 
equations  
 

.  (4) 
 
Here eη is the unit vector of the η-axis, M1k = Mpk, 
M2k = M3k = Msk.  

The potentials jjk are employed to express the 
components of the stress tensors σlmk in the body 
(k = 1) and the shell filler (k = 2), which are related 
to the components ulk of the displacement vectors uk 
by Hooke's law (l, m = r, θ, η, k = 1, 2; l, m = x, y, η, 
k = 1).  

Thus, to determine the SSS components of the 
body and the shell filler it is necessary to solve 

Eqs. (4) in accordance with the following boundary 
conditions: 

- when x = h   ; (5) 
 
- when r = R1  , ,  

 (6) 
- when r = R2  , . 
 
We will first examine the impact of a load 

moving sinusoidally with respect to η on the shell 
 

   (7) 

 
In a steady state, the dependence of all variables 

on h has the form (7), thus 
,  (8) 

.  (9) 
 
Substituting (9) into (4), we obtain 
 

  (10) 
 

where , , , 
 – two-dimensional Laplace operator. 
By employing the (9), we can derive expressions 

for displacements  and stresses  
(l, m = r, θ, η) within the body (k = 1) and shell filler 
(k = 2), as well as ,  (l, m = x, y, η) within the 
body, in response to a sinusoidal load (7) as a 
function of the Φjk (* means that these components 
correspond to the case of a sinusoidal moving load 
(7) affecting the shell). 

Since c < csk, Msk < 1 (k = 1, 2) and the solutions 
of Eqs. (10) can be formulated as [18] 
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Here, – Macdonald functions and 

modified Bessel functions, , ; 

an1, …, an9, gj(x,z) are unknown coefficients and 
functions, j = 1, 2, 3. 

In the Cartesian coordinate system, the 
expressions for the potentials Φj1 (11) will take the 
form [18] 

 

 

, (12) 
 
where 

. 
From the boundary conditions (5) rewritten for 

 (m = x, y, η), using (12), we express the 
functions gj(x,z) through the coefficients anj 
(j = 1, 2, 3). By extracting the coefficients at eiyζ and 
equating them to zero, we obtain a system of three 
algebraic equations, from which we find 

 

.  (13) 

 
The form of determinants  and  coincides with 
similar determinants in the case of an unsupported 
cavity in an elastic half-space and is defined in [8], 
where it is proved that  does not approach 
zero if c < cR, where cR is the velocity of Rayleigh 
surface waves in the half-space [20]. 

When c < cR, the relations (12), considering (13), 
will take the following form 

 

 

. 

 

In the cylindrical coordinate system, when 
c < cR, the expressions for the potentials Φj1 (11), 
considering (13), will take the form [18]  

 

, 

 

where , 

. 
 

Let us substitute the relations found in the 
cylindrical coordinate system for the potentials ΦjK 

into the expressions for displacements  and 
stresses  (l, m = r, θ, η) in the body (k = 1) and 
shell filler (k = 2). Then only the coefficients an1, 
…, an9 are unknown in these expressions.  

By substituting (8) into (1) and solving the 
resulting system of equations for the n-th term of the 
expansion with respect to u0nhk, u0nqk, and u0nrk, one 
can obtain the expressions for these variables, which 
are presented in [5]. 

To determine the coefficients an1, …, an9, it is 
necessary to employ the boundary conditions (6), 
which have been rewritten for  (l = r, θ, η; 
k = 1, 2).  

By substituting the corresponding expressions 
into (6) and equating the coefficients of the Fourier-
Bessel series when einq, an infinite system of linear 
algebraic equations (n = 0, ±1, ±2,…) is obtained. 
The system can be solved using the method of 
reduction or the method of successive reflections 
[8], which is more convenient for solving the 
problem at each successive reflection. This method 
allows the solution of a system of linear equations of 
block-diagonal form with matrices of size 9´9 and 
determinants Dn(x, с) along the main diagonal.  

When a uniformly moving aperiodic load of the 
form P(q,h) = p(q)p(h) (which is typical for 
vehicles) affects the shell, it is expressed, as well as 
the SSS components of the body and the shell filler, 
in the form of Fourier integrals  

 

, 

; 
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critical velocities с(n)* (c < с(n)*), which may be less 
than the Rayleigh velocity of the surface waves. The 
values of с(n)* depend on the number n and are 
determined from the dispersion equations 
Dn(x, с) = 0 as minima of the dispersion curves 
corresponding to these equations from с ~ x. 
Furthermore, the minimum critical velocity is 
observed to occur when n = 0 (min c(n)* = c(0)*) [8].  
 
4.2 Numerical Experiments 
 

We will consider a tunnel supported by a three-
layer steel-concrete lining with a depth of 
embedment h = 6 m in a rock body with the 
following characteristics: r1 = 1.5×103 kg/m3, 
n1 = 0.294, µ1 = µ = 1.0935×108 Pa. The calculation 
parameters for the tunnel lining are as follows: the 
middle layer (filler) is concrete (r2 = 2.5×103 kg/m3, 
n2 = 0.2, µ2 = 1.21×1010 Pa [21]) shell with surface 
radii R1 = 3.0 m, R2 = R = 2.5 m; the outermost 
layers (cladding) are thin-walled steel shells 
(n01 = n02 = 0.3, µ01 = µ02 = 8.08×1010 Pa, 
r01 = r02 = 7.8×103 kg/m3). The thickness of the 
shells is h01 = h02 = 0.02 m.  

The transport normal loads of intensity Pr., 
shown in Fig. 2, move along the tunnel with velocity 
c = 100 m/s. The loads are uniformly distributed 
along the h axis in the interval |h| £ l0 = 0.2 m.  

 

 
 

Fig. 2. A load moving through the tunnel 
 

Two cases of tunnel loading will be considered: 
symmetric and asymmetric.  

In the first case, it will be assumed that the load 
intensity is constant over the entire surface of its 
application, i.e. Pr = P° (Pa).  

In the second case, the intensity of the load is 
uniformly distributed along the angular coordinate to 
the left of the vertical diametral plane of the tunnel 
and is therefore twice the intensity of the same load 
applied to the right of this plane, i.e. when 
90°£ q £ 150° Pr = P°; when 210°£ q £ 270° 
Pr = 2P°.  

The numerical studies of the dispersion equations 
corresponding to this case have demonstrated that 
there are no critical velocities within the subsonic 
velocity range of the load.  

The   following    notations    will   be introduced  
(index k = 1 in the displacements and stresses 
designations is omitted): u°x = uxµ/P°(m), 
u°y = uyµ/P°(m), s°yy = syy/P°, s°hh = shh/P°. 

Tables 1 and 2 present the results of calculating 
the SSS of the ground surface (x = h) in the xy 
(h = 0) coordinate plane, when the tunnel is loaded 
with both symmetric and asymmetric transport 
normal loads. According to the data in Tables 1 and 
2, the curves for the variations of u°x, u°y, s°yy, s°hh 
of the ground surface in the xy-coordinate plane are 
presented in Figures 3 – 6. The first set of curves 
(Curves 1) correspond to the case of symmetric 
loading of the tunnel by transport loads, while the 
second set of curves (Curves 2) correspond to the 
case of asymmetric loading. 
 
Table 1. The SSS components of the ground surface 
in the xy coordinate plane when the tunnel is loaded 
with symmetric transport normal loads 

 

Comp. 
SSS 

y/R 

0.0 -0.2 
0.2 

-0.4 
0.4 

-0.6 
0.6 

-0.8 
0.8 

-1.0 
1.0 

-1.2 
1.2 

-1.4 
1.4 

-1.6 
1.6 

u°x´100 -0.96 -0.96 -0.92 -0.92 -0.92 -0.88 -0.88 -0.84 -0.84 

u°y´103 0.0 0.16 
-0.16 

0.28 
-0.28 

0.36 
-0.36 

0.44 
-0.44 

0.48 
-0.48 

0.48 
-0.48 

0.44 
-0.44 

0.40 
-0.40 

s°yy´103 -1.68 -1.64 -1.48 -1.28 -1.04 -0.80 -0.60 -0.44 -0.32 
s°hh´103 -3.20 -3.16 -3.04 -2.88 -2.72 -2.52 -2.32 -2.16 -2.04 

 
Table 2. The SSS components of the ground surface 
in the xy coordinate plane when the tunnel is loaded 
with asymmetric transport normal loads 

 

Comp. 
SSS 

y/R 

0,0 -0.2 
0.2 

-0.4 
0.4 

-0.6 
0.6 

-0.8 
0.8 

-1.0 
1.0 

-1.2 
1.2 

-1.4 
1.4 

-1.6 
1.6 

u°x´100 -1.44 -1.44 
-1.40 

-1.44 
-1.40 

-1.44 
-1.36 

-1.40 
-1.32 

-1.36 
-1.28 

-1.32 
-1.24 

-1.32 
-1.24 

-1.28 
-1.20 

          

u°y´100 -0,68 -0.68 
-0.72 

-0.64 
-0.72 

-0.60 
-0.72 

-0.60 
-0.72 

-0.56 
-0.72 

-0.56 
-0.72 

-0.56 
-0.72 

-0.56 
-0.68 

          

s°yy´103 -2,68 -2.84 
-2.32 

-2.80 
-1.84 

-2.56 
-1.32 

-2.20 
-0.88 

-1.76 
-0.56 

-1.32 
-0.32 

-0.92 
-0.20 

-0.60 
-0.20 

          

s°hh´103 -4,88 -4.96 
-4.64 

-4.88 
-4.36 

-4.72 
-4.00 

-4.44 
-3.68 

-4.12 
-3.40 

-3.80 
-3.12 

-3.48 
-2.96 

-3.20 
-2.84 

 

x 

q 

r 

60° 
Pr 

y 

60° 
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Fig. 3. Displacements u°x of the ground surface in the xy coordinate plane 

 
 

Fig. 4. Displacements u°y of the ground surface in the xy coordinate plane 
 

 
 

Fig. 5. Stresses s°yy of the ground surface in the xy coordinate plane 
 

 
 

Fig. 6. Stresses s°hh of the ground surface in the xy coordinate plane 
 
 

5. DISCUSSION 
 

The analysis of the calculation results reveals 
that vertical displacements of the ux points 
(deflections) of the ground surface occur in a 

downward direction (in the direction of the 
symmetrical transport loads or the vertical 
component of the asymmetrical transport loads). 
Furthermore, the stresses syy and shh in these points 
are compressive (Fig. 3, 5, 6). When the tunnel is 

u°x∙102 
-0.4 0.4 0.8 1.2 -0.8 -1.2 

-1.2 

-0.8 
y/R 

1 

2 

0 

u°y∙103 

y/R 0.4 0 0.8 1.2 -0.4 -0.8 -1.2 

-0.4 

0.4 

1 

-0.4 0.4 0.8 1.2 -0.8 -1.2 y/R 0 

-0.8 

-1.6 

-2.4 

σ°yy∙103 

1 

2 

σ°ηη∙103 
y/R -0.4 0.4 0.8 1.2 -0.8 -1.2 0 

-2.8 

-3.6 

-4.4 

-2.0 1 

2 
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loaded with symmetrical transport loads, the curves 
of changes u°x, s°yy, s°hh of the ground surface 
exhibit a symmetrical pattern with respect to the x-
axis, reaching their maximum values when y = 0. 
That is, at y = 0 |ux| = max|ux|, |syy| = max|syy|, 
|shh| = max|shh|. As the value of |y| increases, the 
values of |ux|, |shh|, |syy| decrease. In the case of 
asymmetric transport load (when the intensity of the 
left half of the symmetrical transport load increases 
twice), the symmetrical nature of the ground surface 
variation curves u°x, s°yy, s°hh is disrupted. The 
largest deflection increases by 1.5 times, max|shh| by 
1.55 times (y = - 0.2R), and max|syy | by 1.69 times 
(y = - 0.2R). It is important to note that when the 
intensity of a symmetric load is increased by a factor 
of 1.5, that is when its resultant is equal to the 
vertical component of the resultant of the 
asymmetrical load, the values of components of the 
ground surface SSS ux, uy, syy, shh will also increase 
by a factor of 1.5.  

As follows from Fig. 4, when the tunnel is 
subjected to a symmetric transportation load, the 
horizontal displacements of the uy points (shears) of 
the ground surface, when y < 0, occur to the right, 
and when y > 0, they occur to the left (when y = 0, 
uy = 0). Symmetric points relative to the x-axis 
exhibit the same displacement. As |y| increases from 
0 to 1.1R, the values of |uy| increase (at |y| = 1.1R 
|uy| = max|uy|). However, as |y| continues to increase, 
the values of |uy| begin to decrease. In the case of an 
asymmetric transport load (with the intensity of the 
left half of the symmetric transport load doubled), 
horizontal displacements uy of all points on the 
ground surface occur to the left (in the direction of 
the horizontal component of the resultant of this 
load), and max|uy| increases by a factor of 15 
(Table 2). 
 
6. CONCLUSION 
 

A model problem is solved to study the dynamics 
of a shallow tunnel supported by a three-layer lining 
under steady-state transport loads. Unlike similar 
works, where the rock body is represented as an 
elastic space, this paper provides it as an elastic half-
space.  

The authors conducted numerical experiments 
using developed computer programs to examine two 
scenarios of loading a shallow tunnel supported by a 
three-layer steel-concrete lining (comprising a thick 
middle concrete layer and thin outer steel layers) 
with a uniform, normal load moving along its lower 
half. The loading was considered both symmetric 
with respect to the vertical diametral plane of the 
tunnel and asymmetric. The numerical values of the 
SSS components of the ground surface in the plane 
normal to the tunnel axis, passing through the centre 

of the moving load, were obtained. The results of the 
calculation are subjected to analysis, which reveals 
that as the intensity of the half-symmetric load 
increases, the nature of the changes in displacements 
and stresses on the ground surface undergoes a 
transformation, with their extreme values also 
demonstrating a corresponding increase. The most 
notable increase is observed in the horizontal 
displacements. It is, therefore, necessary to ensure 
that the transport loads in the tunnel have a 
symmetric form relative to its vertical diametral 
plane in order to avoid unacceptable displacement of 
the ground surface during the operation of a shallow 
tunnel in urban development conditions. 

The mathematical model of the dynamics of a 
shallow tunnel supported by a three-layer lining 
under transport loads, developed and presented in 
this paper can be utilized by design engineering 
organizations with a specialization in the field of 
metro and tunnel engineering.  

It should be noted that the obtained solution can 
only be applied in the case of thin shell linings, for 
which the classical equations of shell theory are 
valid in describing their motion. Otherwise, their 
motion should be described by the dynamic 
equations of elasticity theory, which defines the 
direction for future research. 

 
7. REFERENCES 

 
[1] Sheng X., A Review on Modelling Ground 

Vibrations Generated by Underground Trains, 
International Journal of Rail Transportation, 
Vol. 7, No. 4, 2019, pp. 241-261. 

[2] Yerzhanov Zh.S. and Aitaliev Sh.M., The 
dynamics of tunnels and underground pipelines, 
Nauka, Alma-Ata, 1989, pp. 1-240. 

[3] Lvovsky V.M., Steady-state oscillations of a 
cylindrical shell in an elastic medium under the 
action of a moving load, Sat.: Issues of strength 
and ductility, Dnipropetrovsk, 1974, pp. 98-110. 

[4] Pozhuev V.I., The action of moving load on a 
cylindrical shell in an elastic medium, Structural 
Mechanics and Structural Analysis, No. 1, 1978, 
pp. 44-48. 

[5] Alexeyeva L.A. and Girnis S.R., Research of 
dynamic behaviour of trilaminar casing in elastic 
space at influence of moving loading, 
Mathematical journal, Vol. 9, No. 4, 2009, pp. 5-
13. 

[6] Otarbaev Zh.O., Influence of contact conditions 
on two-layer shell a tunnel of a deep embedding 
and a massif on its tense-deformed condition at 
action of transport loads, Vestnik KazNTU, 
No. 2, 2015, pp. 274-280. 

[7] Bulyga L.L. and Stanevich V.T, Action of 
Moving Load on a Two-Layer Shell in Elastic 
Medium, Lecture Notes in Networks and 
Systems, Vol. 574, 2023, pp. 2301-2311. 



International Journal of GEOMATE, Nov., 2024 Vol.27, Issue 123, pp.83-91 

91 
 

[8] Alekseeva L.A. and Ukrainets V.N., Dynamics 
of an elastic half-space with a reinforced 
cylindrical cavity under moving loads, 
International Applied Mechanics, Vol. 45, 
Issue 9, 2009, pp. 75-85. 

[9] Alexeyeva L.A., Model of the dynamics of a 
tunnel and a shallow underground pipeline under 
the action of traffic loads, Bulletin of L.N. 
Gumilyov ENU, Mathematics. Computer science. 
Mechanics series, Vol. 133, No. 4, 2020, pp. 28–
39. 

[10] Otarbaev Zh.O., Influence of friction during 
transportation of loads through underground 
pipelines on the stress-deformed state of the 
earth surface, Bulletin of Kazakh Leading 
Academy of Architecture and Construction, 
No. 1, 2022, pp. 189-198.  

[11] Gorshkova L. and Zhukenova G., The impact of 
normal and tangential loads on a shallow tunnel, 
Bulletin of L.N. Gumilyov ENU, Mathematics. 
Computer science. Mechanics series, Vol. 144, 
No. 3, 2023, pp. 12-22. 

[12] Makashev K.T. and Stanevich V.T., Dynamic 
response of unsupported and supported cavities 
in an elastic half-space under moving normal and 
torsional loads, Bulletin of the Karaganda 
University, series Physics, Vol. 112, No. 4, 2023, 
pp. 65-75 

[13] Yuan Z., Boström A., Cai Y. and Cao Z., 
Closed-Form Analytical Solution for Vibrations 
from a Tunnel Embedded in a Saturated 
Poroelastic Half-Space, Journal of Engineering 
Mechanics, Vol. 387, 2017, pp. 177-193. 

[14] Boström A. and Yuan Z., Benchmark solutions 
for vibrations from a moving source in a tunnel 
in a half-space, In Ground Vibrations from High-
Speed Railways, ICE Publishing, 2019, pp. 261-

281. 
[15] Coşkun İ. and Dolmaseven D., Dynamic 

Response of a Circular Tunnel in an Elastic Half 
Space, Journal of Engineering, Hindawi Limited, 
Vol. 2017, 2017, pp 1-12. 

[16] He C., Zhou S., Di H., Guo P. and Xiao J., 
Analytical method for calculation of ground 
vibration from a tunnel embedded in a multi-
layered half-space, Computers and Geotechnics, 
Vol. 99, 2018, pp. 149-164. 

[17] He C., Jia Y. and Zhou S., Semi-analytical 
method for calculating ground vibrations from a 
tunnel in a homogeneous half-space with an 
irregular surface, Journal of Sound and Vibration, 
Vol. 591, 2014, pp. 118-615. 

[18] Girnis S., Ukrainets V., Stanevich V., 
Gorshkova L. and Akhmetova A., The Transport 
Load Influence on a Reinforced Two-Layered 
Tunnel Lining, International Journal of 
GEOMATE, Vol. 26, Issue 117, 2024, pp. 27-34. 

[19] Liu X., Liu Y., Jiang Z., Wang J. and 
Mang H. A., Numerical investigation of the 
mechanical behavior of segmental tunnel linings 
reinforced by a steel plate – Concrete composite 
structure, Engineering Structures, Vol. 276, 
No. 3, 2023, pp. 115-130. 

[20] Novackij V., Theory of elasticity, Mir, Moscow, 
1975, pp. 1-872. 

[21] Rakhimov M.A., Rakhimova G.M. and 
Suleimbekova Z.A., Modification of Concrete 
Railway Sleepers and Assessment of Its Bearing 
Capacity, International Journal of GEOMATE, 
Vol. 20, Issue 77, 2021, pp. 40-48. 
 

 

Copyright © Int. J. of GEOMATE All rights reserved, 
including making copies, unless permission is obtained 
from the copyright proprietors.  

https://www.scopus.com/record/display.uri?eid=2-s2.0-85098779660&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85098779660&origin=resultslist
https://www.scopus.com/record/display.uri?eid=2-s2.0-85098779660&origin=resultslist

