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Abstract—The problem of the effect of a load moving at a constant velocity over a three-layer circular
cylindrical shell in an elastic half-space is solved. The dynamic equations of the elasticity theory in the
Lamé potentials are used to describe the motion of the half-space and the inner layer of the shell.
Oscillations of the outer layers of the shell are described based on the classical equations of the theory
of thin shells. The solution has been obtained for the case when the velocity of the load is less than the
velocity of the Rayleigh wave and the critical velocities of the latter. Based on the solution of the prob-
lem, the stress-strain state is studied for a shallow tunnel reinforced with the use of a three-layer steel-
concrete lining affected by a symmetric or asymmetric normal load originating from the intratunnel
transport uniformly moving along its tray.
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1. INTRODUCTION

One of the model problems used in the studies on the dynamics of shallow tunnels affected by transport
load (the load originating from a moving intratunnel transport) is represented by a problem of the effect
of a load uniformly moving on the inner shell surface along its generatrix parallel to a free half-space
boundary. In contrast to a similar problem for an elastic space that simulates a deep tunnel, this problem
is more complicated, since it becomes necessary to take into account the waves reflected by the boundary
of the half-space. Therefore, the number of publications devoted to the studies on this problem is not
numerous and covers mainly recent years, see, in particular, [1—S8].

In the present study, a mathematical model for the dynamics of a shallow tunnel reinforced with a
three-layer lining affected by a traffic load is constructed. Using the method of incomplete variable sepa-
ration and re-expansion of cylindrical and plane waves, an analytical solution of the problem has been
constructed based on which an algorithm is developed and a software package in the FORTRAN language
is developed in order to calculate the stress-strain state of the tunnel lining and rock body, taking into
account the velocity of the traffic load, the depth of the tunnel, and the physicomechanical properties of
the body and the material of the shells. A subsonic case is considered, wherein the motion velocity is less
than the propagation velocity of elastic waves in the body, including the Rayleigh wave velocity for an elas-
tic half-space. The results of numerical experiments are presented and analyzed.

2. PROBLEM FORMULATION AND ANALYTICAL SOLUTION

As a design scheme for a shallow tunnel reinforced with a three-layer lining, an infinitely long circular
cylindrical three-layered shell is considered in a linearly elastic, homogeneous and isotropic half-space
(body) referred to as fixed cylindrical r, 0, z and Cartesian x, y, z coordinate systems, whose axis coin-
cides with the axis of the shell and is parallel to the load-free horizontal boundary of the half-space
(Earth’s surface), the x-axis being perpendicular to this boundary: x < & (Fig. 1).
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Fig. 1. Three-layer shell in an elastic half-space.

The inner layer of the shell represents a thick-walled shell (aggregate), whereas the outer layers (sheath-
ing) consist of thin-walled shells with median surface radii R, R,, and thicknesses /,, #y,. Owing to the
smallness of the layer thickness composing the sheathing, it is assumed that they are in contact with the
aggregate and the surrounding body throughout their median surfaces. The contact between the layers of
the shell is assumed to be rigid, whereas the contact between the shell and the body is assumed to be either
rigid or sliding under a two-way connection in the radial direction.

On the inner surface of the shell in the direction of its z-axis at constant speed ¢ moves a load with
intensity P the form of which does not change over time (steady-state load). The motion velocity of the
load is assumed subsonic, i.e., lower than the velocities of shear wave propagation in the aggregate and in
the body (typical for modern vehicles). The physicomechanical properties of the body and aggregate are
characterized, respectively, by the following constants: v,, W, p;; V, W, P5, Where v, is Poisson’s ratio,
L, is the shear modulus, and p, is the density (k = 1,2). Further, index k = 1 refers to the body, whereas
index k = 2 refers to the aggregate.

Since a steady-state process is considered, the deformation pattern is steady-state with respect to the
moving load. Therefore, one can switch to a load-related moving a Cartesian (x, y,mn = z — ¢t) or cylin-

drical (r,0,n = z — ct) coordinate system.

In order to describe the motion of the body and the aggregate, the following dynamic equations of the
elasticity theory in a moving coordinate system are used [4]

(M,; — M} grad divu, + MV?u, = 9w, [on’, k=12, Q2.1)
where M, =c/c,., My = c/cy are the Mach numbers; c,, = /(A +2U,)/ps, ¢y = s /P, are the

propagation velocities of expansion—compression and shear waves in the body and aggregate, A, =

2u, v, /(1 =2v,); w; are the displacement vectors of the body and aggregate points, and V? is the Laplace
operator.

The oscillations of the sheathing layers can be described according to the classical equations of the the-
ory of thin shells in a moving coordinate system, as it follows [2—4]
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Here, for outer sheathing layer £ = 1, and for the inner one k = 2; v, L, and p,, are Poisson’s ratio, the
shear modulus, and the density of sheathing layer materials, respectively, g, , Upey > and u,, are the dis-
=0

Uppy +

+

(qu - QrRk ) .

placements of the points of the midsurfaces of sheathing layers, g;; =0 and

n2l=g,> 4t 12l,=g?

qjr = G,j1| _g are the components of the aggregate and body response, (under sliding contact between the
r=nK
shell and body ¢,z = gor =0), G, G5, are the stress tensor components in the body and the aggregate,
and g;, = P,(6,Mm), P;(6,n) are the components of moving load intensity P(6,m), j =1,6,r.
Since the boundary of the half-space is free from loads, then at x = A,
Gxxl = nyl = Gxnl =0. (23)

Under different contact conditions of the contact between the shell and the body, the boundary con-
ditions have the following form:

— For a sliding contact between the shell and the body

at r= Rl Uy = Uy, uj2 = qul, c;rnl = O’ G,o = 0

2.4
at r=R, up=uy, j=r0m; (2.4)
— For a rigid contact between the shell and the body
at r:R2 ujzzquz, J:r,e,n,
where u, are the components of vectors uy, k =1,2.
Vectors u, can be expressed based on Lamé potentials [1, 4]
u, = grad @y + rot (e, )+ rotrot(Qye,); k=12, (2.6)

which, as it follows from (2.1) and (2.6), satisfy the following equations
Vi, = M0, /o’ j=123 k=12 2.7)

Here, e, is the unit vector of the n-axis, M\, = M ,;., My, = M5, = M.

Based on the same potentials, by using (2.6) and Hooke’s law, one can express stress tensor compo-
nents 6,,, in the body (kK = 1) and in the aggregate (k = 2) in the cylindrical coordinate system
(I,m = r,6,m), as well 6,,,, in the Cartesian coordinate system (/,m = x, y,m).

Thus, in order to determine the components of the stress-strain state (SSS) for the body and for the
aggregate, it is necessary to solve Egs. (2.7) by using boundary conditions (2.3) and depending on the con-
dition of contacting between the shell and the body, (2.4) or (2.5).

Let us consider the case of a shell affected by a sinusoidal (with respect to 1) moving load arbitrarily
depending on angular coordinate

P(OM) = p(6)e™, p(8)= D Pe"™,
== (2.8)

P(0N)=p,(0)€%, p;(0)= D P j=r6m,

Nn=—oc0
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where constant & determines period 7' = 27/ for acting load.

Under steady-state conditions, all quantities depending on 1M can be expressed according to (2.8),
therefore

0 (r,0M) =@, (r,0)e™; =123 k=12 (2.9)

Uy (M) = D tpue™e™  j=r0m, k=12 (2.10)

Hn=—o00

By substituting (2.9) into (2.7), one can obtain

Vid, —mE®, =0, j=123 k=12 (2.11)

2.\1/2 2. . .
where m; = (1-M},) 2, My =My, My =my =my, V) isthe two-dimensional Laplace operator.

By using (2.9), one can obtain relationships for displacements u, and stresses o, (l, m=r,0, n) inthe
body (k= 1) and in the aggregate (k = 2), as well as u};, 6}, (l, m= X, y,n) in the body depending on sinu-

soidal load as a function of @ ; (the * sign means that these components have been found for the shell
affected by a sinusoidal moving load).

In the case of subsonic load velocity M, <1, my > 0, k = 1,2, and the solutions of Egs. (2.11) can be
represented [3, 4] in the following form

D, =)+, =123 k=12 (2.12)
where:
for the body
@) = Z (kur)e™, o©f = j g, (£,0)exp(iyG + (x — MW + k)G (2.13)
and for the aggregate

(/12) - z arlj+3K /2 emea (122) - Z a}’lj+61 (k/2r)eme (214)

Here, I,(k;r), K,(k;r), respectively, are the modified Bessel functions and Macdonald functions
ki =|myg, Ky =|m,
Jj=1273.

As it has been shown in [1, 2, 4], the representation of potentials for a half-space according to (2.12)
leads to the following relationships for these potentials in the Cartesian coordinate system:

;= | L 7 Za@ +8,60e ’”ff}’y@dc (2.15)

—oo

where f, = |02 + k2, ®,, = [(C+ £,)/knl's J = 1,23,

Let us use boundary condmons (2.3) rewritten for ¢*

; £,(80), a,,...,a,, unknown functions, and coefficients to be determined,

Gy1» Oy taking into account (2.15). By sepa-

xx1»
rating the coefficients at ¢” ¢ and equating them to zero, owing to the arbitrariness of y, one obtains a sys-
tem of three equations, based on which one can express functions g; (&,{) through unknown coefficients

ays s an3:

£,&0) = ZA,,e "y 4@, (2.16)

Hn=—o00

The form of determinant A* and of algebraic complements Ajf, coincides with similar determinants for
an unsupported cavity in an elastic half-space and is determined in [2, 4]. In particular, here A* is the
Rayleigh determinant that in this case has the following form
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A* = (2p3 - B2)2 — 4p2\Jp? — o2 \p? - B

- Mp]&, B = M_y]&v pi = &2 + gza
and does not go to zero at any (, if the motion velocity of the load is less than Rayleigh surface wave veloc-
ity cg, further called the Rayleigh velocity. Otherwise, it the determinant goes to zero at points { =
+0* =+ g JM} =1, My = ¢/cg, and the integrals in relationship (2.15) become divergent.

Let’s confine ourselves to a case where ¢ < cg. Then, all the integrands in (2.15) are continuous and
tend to zero exponentially at infinity. Taking into account (2.16), potentials (2.15) have the following form

j z a,®,; +e ii—ze"f' i an,d)n,}iycdc. (2.17)

j H=—00 =1 n=—oo

It should be noted that Rayleigh velocity ¢y is somewhat lower than the velocity of shear waves in the
rock body.

Using the following relationship known for the case of x < 4 [1, 2]

exp(iyG + (x — MG +K2) = Zl(k PG+ 1) 1,

let us represent ® ;; (2.12) in a cylindrical coordinate system

o

D= La,,,mk,,r) + 1,00 [ g, cnn,ehﬁdc}""e

n=—o00

By substituting g; (&, C) into the last relationship from (2.16), for ¢ < ¢z one can obtain

oo

D = D (ayK,(kyr) + by, (kr))e™, (2.18)

Nn=—oco

- o A o
where b,; = 213:1 Zm= Gy s A = I—mA_iq)MIq)nje "IDag.

By substituting (2.18) at £ = 1 and by substituting (2.12) at k¥ = 2, into the relationships for uj,, G},
({,m = r,0,m), one can obtain new relationships for the SSS components for the body and for the aggre-
gate in cylindrical coordinates at ¢ < cg, where only coefficients a a, are unknown.

By substituting (2.10) into (2.2) and resolving the system of equations obtained for the nth term of

nlosees

expansion with respect g, ., Uy, Upn ONE can find the corresponding expressions.

In order to determine coefficients a,,...,

uj, (I =r,0,m) and o}, 6%, depending on the conjugation condition between the shell and the body. By
substituting the corresponding relationships into the boundary conditions and equating the coefficients of

a,o let us use boundary conditions (2.4) or (2.5) rewritten for

the series at " , one can obtain an infinite system (n = 0,%1,12,...) of linear algebraic equations that can
be solved using a reduction method or the method of successive reflections being more convenient for
solving the formulated problem [2], which makes it possible to solve for each successive reflection a block-
diagonal system of linear equations, with 9 X 9 matrices and determinants A, (&, c) along the main diago-
nal.

Knowing the solution of the problem for a sinusoidal load, the response of the shell and its environ-
ment with respect to an aperiodic (local) load moving at a constant velocity in the form of P(6, &) =
p(0) p(n) (characteristic of vehicles) can be found using superposition, based on the representation of the
load and the body and aggregate SSS components in form of Fourier integrals, as it follows

MECHANICS OF SOLIDS  Vol.57 No.7 2022
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~

Fig. 2. A load moving along the tunnel tray.

Table 1. SSS components of the tunnel cross-section (1 = 0) affected by a symmetric moving load

SSS 0, deg
oo |ComPo 20 40 60 80 | 100 | 120 | 140 | 160
nent 0 180
-20 40 —60 —80 —100 —120 —140 —160
Aggregate (concrete layer)
R, w x 10| —0.25 | —0.23 | —0.17 | —0.07 0.08 0.23 0.30 0.27 0.18 0.13
% 0.0 0.15 0.17 0.12 0.07 0.0 —0.11 | —0.15 | —0.09 0.0
—0.15 | —0.17 | —0.12 | —0.07 0.11 0.15 0.09
G8g 0.02 0.10 0.29 0.45 0.34 0.02 | —0.10 0.24 0.80 1.08
Onn —-0.10 | —-0.16 | —0.15 | —0.13 | —0.67 | —1.72 | =2.25 | —1.61 | —0.47 0.08
R w? x 10| —=0.24 | —=0.22 | -0.17 | —-0.07 0.07 0.21 0.28 0.25 0.17 0.13
% 0.0 0.04 0.04 0.05 0.10 0.10 | —0.03 | —0.02 | —0.02 0.0
—0.04 | —0.04 | —0.05 | —0.10 | —0.10 0.03 0.02 0.02
(o —0.09 | —0.07 0.07 0.01 0.50 1.32 1.74 1.23 0.24 | —0.25
O —0.54 | —0.48 | —0.35 | —0.10 0.52 1.33 1.67 1.18 0.32 | —0.10
Rock body
Ry w? x 10| —0.24 | —=0.22 | -0.17 | —0.07 0.07 0.21 0.28 0.25 0.17 0.13
0% x 10[ 0.0 0.03 0.05 0.04 | —0.02 | —0.07 | —0.08 | —0.05 | —0.02 0.0
—0.03 | —0.05 | —0.04 0.02 0.07 0.08 0.05 0.02
Gge X 10| —0.02 | —0.02 0.01 0.05 0.05 | —0.01 | —0.06 | —0.04 0.02 0.06
o5y % 10| —0.05 | —0.04 | —0.01 0.02 0.01 | -0.01 | —0.03 | —0.01 0.02 0.04
MECHANICS OF SOLIDS  Vol. 57 No.7 2022
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Table 2. SSS components of the tunnel cross-section (1 = 0) affected by an asymmetric moving load
SSS 0, deg
r compo-
nent 0 20 40 60 80 100 120 140 160 180
Aggregate (concrete layer)
R, u® x 10| =0.38 | —0.35 | —-0.28 | —0.17 | —0.02 0.13 0.21 0.20 0.16 0.20
0% 0.10 0.29 0.26 0.12 | —-0.01 | —0.14 | —0.21 | —0.16 | —0.03 0.11
6% 0.03 0.03 0.20 0.36 0.26 | —0.03 | —0.08 0.41 1.18 1.61
O -0.15 | —0.28 | —0.31 | —0.28 | —0.82 | —1.83 | —2.28 | —1.63 | —0.44 0.11
R, u? x 10| =036 | —0.35 | =0.29 | —0.19 | —0.04 0.11 0.19 0.18 0.15 0.19
%0 0.03 0.09 0.08 0.06 0.07 0.05 | —=0.06 | —0.19 | —0.17 0.05
G8g —0.14 | —0.06 0.02 0.14 0.60 1.35 1.71 1.16 0.81 | —0.38
O —0.80 | —0.64 | —0.42 | —0.12 0.47 1.19 1.43 0.89 0.05 | —0.15
Rock body
R, e x10| —0.36 | —0.35 | —-0.29 | —0.19 | —0.04 0.11 0.19 0.18 0.15 0.19
6% % 10| 0.06 0.07 0.05 0.01 | —-0.03 | —0.05 | —0.10 | —0.17 | —0.15 0.01
03¢ x 10| —0.01 0.0 0.02 0.03 0.0 —0.01 0.03 0.05 | —=0.02 | —0.05
oo X 10 —0.07 | —0.06 | —0.02 0.01 | —0.01 | —0.03 | —0.02 0.01 0.02 0.02
SSS 0, deg
r compo-
nent 0 -20 —40 —60 —80 —100 —120 —140 —160 —180
Aggregate (concrete layer)
R, ue x 10| —0.38 | —=0.33 | —0.22 | —0.02 0.26 0.56 0.71 0.61 0.38 0.20
0% 0.10 | —0.16 | —0.25 | —0.23 | —0.23 | —0.14 0.11 0.30 0.26 0.11
63 0.03 0.25 0.68 1.00 0.77 0.10 | —0.22 0.32 1.23 1.61
Ofn —-0.15 | —-0.19 | —0.13 | —0.11 —1.18 | —=3.33 | —4.46 | =3.21 | —0.97 0.11
R ue x 10| —0.36 | —0.32 | —0.22 | —0.03 0.24 0.52 0.66 0.57 0.36 0.19
%50 0.03 | —=0.03 | —0.03 | —0.10 | —0.26 | —0.25 0.04 0.32 0.31 0.05
Ggg —0.14 | —-0.15 | —0.23 | —0.11 0.91 2.63 3.50 2.52 0.63 | —0.38
O%y —0.80 | —0.80 | —0.65 | —0.17 1.09 2.80 3.59 2.66 0.90 | —0.15
Rock body
R, ue x 10| —0.36 | —0.32 | —-0.22 | —0.03 0.24 0.52 0.66 0.57 0.36 0.19
6% % 10| 0.06 0.02 | -0.02 | —0.03 | —0.01 | —0.01 0.03 0.12 0.14 0.01
03 % 10[ —0.01 | —0.01 0.01 0.03 0.0 —0.04 | —0.01 0.03 | —0.01 | —0.05
opn x 10[ —0.07 | —0.05 | —0.01 0.03 0.02 | —0.03 | —0.04 0.01 0.03 0.02

Pom) =L [ Pr(@g)e e = p(o) ptm) = p(6)

o

2n

—oo

o

[ pr(e)eae,

B, (0.) = o [ P (0.8)¢™dE = p, (0) p() = 1, (0)5 [ p¥(E) ™,
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Fig. 3. Diagrams for stresses (a) Ggg, (b) Oy and displacements (¢) u,. on the contour r = Ry (1 = 0) of the aggregate
contact surface: (/) symmetric loading; (2) asymmetric loading.
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Table 3. SSS components of Earth’s surface in the xy plane (n = 0) under symmetric and asymmetric tunnel loading
y/R

—0.2 —0.4 —0.6 —0.8 —-1.0 —1.2 —1.4 —1.6 —1.8 -2.0

SSS
component 0.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Symmetric loading

u® x 10 —-024 | -0.24 | —-0.23 | —0.23 | —0.23 | —0.22 | —0.22 | —0.21 | —0.21 | —0.20 | —0.20

P

uy % 100 0.0 0.04 0.07 0.09 0.11 0.12 0.12 0.11 0.10 0.08 0.07
. -0.04 | —0.07 | —0.09 | —0.11 | —-0.12 | —0.12 | —0.11 | —0.10 | —0.08 | —0.07

o5, X 100 | —0.42 | -0.41 | —0.37 | —0.32 | —0.26 | —0.20 | —0.15 | —0.11 | —0.08 | —0.06 | —0.06
o5, x 100 | —-0.80 | —0.79 | —0.76 | —0.72 | —0.68 | —0.63 | —0.58 | —0.54 | —0.51 | —0.49 | —0.47

Asymmetric loading

u2 % 10 0.36 —0.36 | —0.36 | —0.36 | —0.35 | —0.34 | —0.33 | —0.33 | —0.32 | —0.31 | —0.30

-035 | -0.35 | —-0.34 | —0.33 | —0.32 | —0.31 | —0.31 | —0.30 | —0.30 | —0.30
ug % 10 o -0.17 | —0.16 | —0.15 | —0.15 | —0.14 | —0.14 | —0.14 | —0.14 | —0.14 | —0.15
-0.18 | —0.18 | —0.18 | —0.18 | —0.18 | —0.18 | —0.18 | —0.17 | —0.17 | —0.17
ug, % 100 067 —0.71 | —0.70 | —0.64 | —0.55 | —0.44 | —0.33 | —0.23 | —0.15 | —0.10 | —0.06

—0.58 | —0.46 | —0.33 | —0.22 | —0.14 | —0.08 | —0.05 | —0.05 | —0.06 | —0.08
o5y X 100 -124 | -1.22 | —1.18 | —1.11 | —1.03 | —0.95 | —0.87 | —0.80 | —0.74 | —0.70

—1.22
-1.16 | —1.09 | —1.00 | —0.92 | —0.85 | —0.78 | —0.74 | —0.71 | —0.69 | —0.68

m=r0,mn; (2.19)

w(,0M) = = [ (0,90 (E)dE, 0, (6.1 = 2= [ O (8,0 (E) 4,
2 Y 2n -,
l=r,0m, m=r0mn k=12

Here, p*(&) = 'Lop(n)ef"éndn.
In order to calculate displacements and stresses (2.19), any numerical integration method can be used
if determinants A, (§,¢) (n =0, =1, 2, ...) differ from zero, i.e., when load motion velocity c is less than

critical velocities Clny*- The values of ¢« can be determined based on dispersion equations A, (&, c) =0 [3]

and could be lower than the Rayleigh velocity. The final solution should depend on the specific type of
moving load.

It should be noted that excluding boundary conditions (2.3) from the problem formulation and exclud-

ing CD(ﬁ) from (2.12), one can obtain a solution of a similar problem for an elastic space.

3. NUMERICAL EXPERIMENTS

Let us consider a tunnel reinforced by a three-layer lining with depth 2 = 6 m in a rock body with the
following characteristics: v, = 0.294, i, = u = 1.094 x 10® Pa, p, = 1.5 x 103 kg/m?. Design parameters
for lining: the sheathing consists of thin-walled steel shells (Vo = Vg, = 0.3, Lo = Uo, = 8.08 X 100 Pa,
Po1 = Po2 = 7.8 % 10° kg/m?) having the same thickness hg = Ay, = 0.02 m with median surface radii
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Fig. 4. Changes in the SSS components of Earth’s surface in the xy plane.

R,=3.0m and R, =2.5 m; aggregate represents a thick-walled concrete shell (v,=0.2, u,=1.21 X
10'° Pa, p, = 2.5 x 10° kg/m?). The contact between the rock body and the lining, as well as that between
the lining layers is assumed rigid.

Let us investigate the stress-strain state of the considered tunnel under consideration affected by the
cylindrical normal load originating from intra-tunnel transport moving along its tray at a velocity of 100 m/s

(see Fig. 2). The load is uniformly distributed along the 1 axis in the range of |r|| <l =02m.

Let us consider the two cases of loading: symmetric and asymmetric. In the first case, it is considered
that the intensity of the load is constant throughout the entire surface of the load application, that is,

F=q.

In the second case, the intensity of the load located to the left of the vertical diametral plane of the tun-
nel uniformly distributed throughout the angular coordinate is twice the intensity of the same load that

acts to the right of this plane, that is, at 90° <0 < 150° P. = ¢; at 210° <0 <270° P. = 2q.
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Load parameter g (Pa) is chosen in such a way that the total load along the entire length of the loading
section (2/,, m) amounts to the equivalent concentrated normal ring load with intensity P°° (N/m), i.e.,
q = P/2I,.

The numerical studies on the dispersion equations corresponding to this case have shown that these
equations have no roots in the subsonic velocity range.

Let us introduce the following notations: u;, = u1/P° (m), (m), Gy = O,/ P°, Ogy = Oge/P°, Oy =
O/ P°, uy =u 1/ P° (m), (m), uy =u,i/P° (m), 6, = G,,/P°, where P° = P°°/m (Pa).

Tables 1 and 2 contain the calculation data for the SSS of the tunnel cross section (n = 0) affected by
a symmetric and asymmetric moving load.

According to data presented in Tables 1 and 2, Fig. 3 shows the diagrams of normal stresses Ggy, Oy,
and radial displacements u_ along contour » = R, of the contact with the inner shell of the concrete layer
sheathing atm = 0.

From the analysis of the calculation results it follows that in the case of an asymmetric load, i.e., when
the intensity of the left half of the symmetric load exhibits a two-fold increase, the symmetric character of
displacement and stress distribution along the contours of the tunnel cross-section is violated. At the same
time, in the aggregate (concrete layer), extreme radial displacements u, at = —120° exhibit a 3.4-fold
increase, whereas extreme stresses G, Ogg, and o, exhibit a 2.0-fold increase (at 8 = —140°), a 1.5-fold
increase (at © = 180°), and a 2.0-fold increase (at 6 = —120°), respectively. On the surface of the body
contacting the lining, under any loading of the tunnel, the extreme stresses are much lower than for the
concrete layer of the lining.

On Earth’s surface, the symmetry in the distribution of stresses and displacements is violated, too. The
results of SSS calculations for Earth’s surface in coordinate plane xy (1 = 0) affected by a symmetric and
asymmetric moving load on the tunnel are presented in Table 3.

Figure 4 shows in the coordinate plane xy (n = 0) the changes in the SSS components of Earth’s sur-
face affected by symmetric and asymmetric moving loads on the tunnel. Designation of the curves is
(curve 1) for the symmetric loading and (curve 2) for the asymmetric loading. As it follows from the anal-
ysis of the calculation results, in the second case of loading (under asymmetric loading), the maximum

Earth’s surface deflection u, is 1.5 times greater than it is in the first case (under symmetric loading),
whereas its maximum horizontal displacement u, exhibits a 15-fold increase. Extreme normal stresses G,
and o,,, increase by the factors of 1.7 and 1.5, respectively.

CONCLUSIONS

The obtained solution and the software package developed based on it makes it possible to use math-
ematical simulation methods for studying the dynamics of the rock body and its surface along the tunnel
route at different depths, taking into account the physicomechanical properties of the body and the mate-
rial of the lining structural elements. The motion velocity of the transport load significantly affects the
dynamics of the surface of the body, which should be taken into account, for example, in the construction
of subways, especially nowadays in connection with the intensive development of high-velocity rail trans-
port. The choice of the material and thickness for the shell layers in the tunnel lining makes it possible to
reduce the vibration of the body surface along the route negatively affecting the seismic stability of build-
ings and structures located nearby.

It should be also noted that the velocities of modern vehicles are in the range of subsonic velocities con-
sidered here and are much lower than the upper limit.
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